

COMPÓSITOS MADEIRA-PLÁSTICO UTILIZANDO PARTÍCULAS DE *Pinus* spp. E POLIETILENO TEREFTALATO (PET)

Karine Paola de Marco¹, Martha Andreia Brand², Polliana D'Angelo Rios², Alexsandro Bayestortff da Cunha³

- ¹ Acadêmica do Curso de Engenharia Florestal CAV bolsista PROBIC/UDESC.
- ² Professora Participante do Departamento de Engenharia Florestal CAV.
- ³ Orientador, Departamento de Engenharia Florestal CAV alexsandro.cunha@udesc.br.

Palavras-chave: Painéis reconstituídos de madeira e plástico. Estabilidade dimensional e resistência mecânica dos compósitos. Atendimento as normas de qualidade.

O objetivo do estudo foi avaliar, por meio das propriedades físicas e mecânicas, compósitos madeiraplástico produzidos com partículas de *Pinus* spp e polietileno tereftalato (PET), com intuito de melhorar a estabilidade dimensional dos painéis de partículas de madeira de média densidade, sem prejudicar a resistência e a rigidez. O delineamento do experimento foi composto por seis tratamentos, que buscou produzir compósitos com densidade nominal de 0,70 g/cm³ em diferentes proporções de partículas de Pinus spp e PET, sendo: T1: 100% Pinus:0% PET, T2: 90%:10%, T3: 80%:10%, T4: 70%:30%, T5: 60%:40%, T6: 50%:50%. Foram produzidos três compósitos por tratamento com dimensões de 40 X 40 cm, nos quais foi aplicado 12% de resina uréia formaldeído. O colchão de partículas foi submetido a uma pré-prensagem e posteriormente a prensagem à quente com pressão de 32 kgf/cm², temperatura de 180°C e tempo de 8 minutos. Os ensaios relativos às propriedades físicas e tração perpendicular foram executados de acordo com os procedimentos descritos na ASTM D1037(1995), enquanto que as propriedades mecânicas de flexão estática e arrancamento do parafuso por meio da DIN 52362(1982) e NBR 14810(2013). Os valores encontrados nos ensaios foram submetidos a verificação de normalidade e homogeneidade de variâncias por meio dos testes de Shapiro Wilk e Cochran. Para os valores que não atenderam aos pressupostos, fez-se o uso da transformação de dados do tipo Box-Cox, tornando possível a realização estatística paramétrica. Assim, aplicou-se a Análise de Covariância devido à heterogeneidade de densidade e sua influência sobre as propriedades. Com rejeição da hipótese de nulidade, foi utilizado o teste de médias de Tukey a 95% de probabilidade. Além da análise tradicional, os valores médios de cada tratamento foram comparados aos parâmetros estabelecidos pela NBR 14810(2013), ANSI A208.1(2009), CS 236-66(1968) e EN 312-2(2003). Os valores obtidos nos ensaios (Tabela 1 e 2) indicam que: (i) a massa específica nominal foi atingida, sendo os painéis classificados como de média massa específica segundo as normas de referência; (ii) para razão de compactação, observa-se que houve diferença estatística entre todos os tratamentos, de modo que o acréscimo de partículas de PET nos compósitos teve como consequência a diminuição significativa da variável analisada, desta forma, observa-se que somente o tratamento T2(P90 PET10) apresentou valor médio compatível com o intervalo de 1,3 a 1,6 recomendado pela literatura; (iii) para absorção e inchamento, houve uma melhoria na estabilidade dimensional com o acréscimo das partículas PET, principalmente acima de 30%, o que pode ser devido ao fato do plástico, que tem como característica ser altamente hidrofóbico devido ausência de grupos polares, não absorver água. Em relação às normas de qualidade após o período de 24 horas, somente o tratamento T6(P50 PET50) atende a EN 312-2(2003), todos tratamentos com exceção do T1(P100) e T2(P90 PET10) a NBR 14810 (2013); frente a CS 236-66(1968) e a ANSI A208.1(2009), todos os tratamentos atenderam

ao estabelecido; (iv) a inclusão das partículas PET nos painéis teve influência negativa sobre as propriedades de resistência e rigidez, tanto que somente os tratamentos T1(P100) e T2(P90 PET10) foram estatisticamente equivalentes e superiores, já os demais apresentaram decréscimo nos valores encontrados a medida que se diminuía a quantidade de partículas de *Pinus* spp; (v) em relação aos parâmetros das propriedades mecânicas estabelecidos, observa-se que somente o tratamento T1(P100) atendeu a NBR 14810(2013) e a EN 312-2(2003), os tratamentos T1(P100) e T2(P90 PET10) a classe M1 da ANSI A208.1(2009), e nenhum atendeu a CS 236-66(1968).

Tab. 1 Valores médios das propriedades físicas dos compósitos.

Tratamento	ME_P	RC	Absorg	ção (%)	Inchamento (%)	
	(g/cm ³)	KC	2 h	24 h	2 h	24 h
T1 (P100 PET0)	0,70a (6,54)	1,70a _(6,54)	87,03 d (13,17)	104,78d (11,42)	28,46d _(12,69)	32,60d _(10,38)
T2 (P90 PET10)	0,70a (4,24)	1,38b (4,24)	78,80 cd (07,89)	91,21cd (7,79)	$18,17c_{(18,24)}$	$21,02c_{(15,61)}$
T3 (P80 PET20)	0,70a (5,00)	1,16c (5,00)	69,78 bc (15,08)	79,66bc (12,22)	$14,01bc_{(11,73)}$	$16,80bc_{(12,24)}$
T4 (P70 PET30)	0,71a _(5,66)	1,01d _(5,66)	65,36 abc (15,57)	74,45ab (13,82)	12,19ab _(13,00)	15,61ab _(15,89)
T5 (P60 PET40)	0,71a _(5,99)	0,89e (5,99)	59,90 ab (12,39)	67,29ab (12,06)	11,71ab _(25,40)	15,90ab _(19,76)
T6 (P50 PET50)	0,69a _(5,66)	0,78f _(5,66)	54,09 a (07,24)	$60,81a_{(8,06)}$	$8,51a_{(14,88)}$	$11,44a_{(05,76)}$

Legenda: P: *Pinus* spp; PET: polietileno tereftalato; ME_p: massa específica dos painéis; RC: razão de compactação; Valores entre parênteses: coeficiente de variação (%). Médias seguidas de mesma letra na mesma coluna não diferenciam estatisticamente entre si pelo Teste de Tukey a 95% de probabilidade.

Tab. 2 Valores médios das propriedades mecânicas dos compósitos.

Tuetemente	Flexão Estática (MPa)		LI	Arrancamento do parafuso		
Tratamento	MOE	MOR	(MPa)	Торо	Superfície	
T1 (P100 PET0)	1657,12a (07,78)	15,22a _(17,66)	$0,39a_{(25,31)}$	1111,44ab _(30,54)	1504,57ab _(18,00)	
T2 (P90 PET10)	1522,14ab _(05,10)	14,02a _(10,08)	0,38a _(22,40)	397,67a (14,45)	1679,00a (13,89)	
T3 (P80 PET20)	1395,53b (14,96)	12,73b _(10,50)	$0,22b_{(51,72)}$	957,78b (24,35)	1287,00bc _(10,53)	
T4 (P70 PET30)	813,43c (08,40)	$10,13c_{(16,16)}$	$0,17b_{(19,54)}$	457,67c (47,46)	1154,78cd _(14,36)	
T5 (P60 PET40)	805,99c (16,00)	$8,79c_{(21,70)}$	$0,05c_{(44,66)}$	316,67c (71,59)	885,11de _(29,00)	
T6 (P50 PET50)	482,43d (27,06)	5,83d _(16,44)	$0.05c_{(49.18)}$	277,29c (61,21)	772,00e (23,12)	

Legenda: P: *Pinus* spp; PET: polietileno tereftalato; MOE: módulo de elasticidade; MOR: módulo de ruptura; LI: ligação interna; Valores entre parênteses: coeficiente de variação (%). Médias seguidas de mesma letra na mesma coluna não diferenciam estatisticamente entre si pelo Teste de Tukey a 95% de probabilidade.

Assim, conclui-se que os compósitos apresentaram melhoria nas propriedades de estabilidade dimensional, porém sofreram uma queda significativa nas propriedades mecânicas, não sendo viável a sua utilização com os parâmetros do presente estudo. Sugere-se estudos relativos ao aumento do tempo/temperatura na prensagem e/ou uso de substâncias compatibilizantes, de modo que se consiga atingir o ponto de fusão do PET e consequentemente promover uma melhor adesão entre as partículas de madeira e do polietileno.