

ANÁLISE EXPERIMENTAL E NUMÉRICA DE VIGAS DE CONCRETO ARMADO COM AGREGADO RECICLADO

Marianna Ansiliero de Oliveira Coelho Lorencet¹, Isabela Kotelak Rossi².

¹Orientadora, Departamento de Engenharia Civil - CCT marianna.lorencet@udesc.br ²Acadêmica do Curso de Engenharia Civil - CCT - bolsista voluntário.

Palavras-chave: agregado reciclado de concreto, dosagem de concreto, viga de concreto armado.

A constante preocupação com o meio ambiente, e o impacto significativo que a construção civil vem gerando ao longo dos anos tornou-se um incentivo para o avanço em pesquisas para minimizar os danos gerados.

A substituição do agregado graúdo natural para a confecção do concreto por um agregado reciclado é o objetivo principal da nossa pesquisa, a fim de buscar novas informações, técnicas e confiabilidade para o uso em concreto armado para fins estruturais.

Iniciou-se com ensaios para a caracterização do agregado graúdo reciclado. Esse agregado é obtido do britamento de concretos oriundos de construções antigas e demolições. Foram realizados ensaios de granulometria, onde o agregado reciclado apresentou uma curva de distribuição entre a zona da Brita 0 e a da Brita 1, segundo limites determinados pela NBR 7211 (ABNT, 2009), além de ensaios de caracterização da areia.

Como esperado, para a massa específica o resultado para o agregado reciclado foi menor do que para o agregado natural, respectivamente 2,50 g/cm³ e 2,74 g/cm³(8,76% menor que do agregado graúdo natural).

Os resultados para a absorção mostraram uma elevada absorção para os agregados graúdos reciclados, média de 0,23% para o agregado natural e 3,81% para o reciclado. Provando que à quantidade de argamassa presente na superfície do agregado reciclado é a causa da elevada absorção em comparação com o agregado natural (BUTTER, 2003).

Buscamos uma metodologia para o tratamento desse agregado reciclado a fim de preparálo para a dosagem. Que consiste na separação manual dos agregados de maior dimensão característica (maiores que 25 mm), no peneiramento para diminuir a quantidade de finos depositados em sua superfície, lavagem e posteriormente secagem ao ar. Esta metodologia foi utilizada para o agregado reciclado.

Depois de realizado os ensaios de caracterização e propriedades mecânicas, foram feitas as dosagens do concreto reciclado e natural, segundo a metodologia do IPT/USP com as alterações segundo (CAMPITELI, 2004).Para a dosagem do concreto reciclado foramconfeccionados três tipos de proporções de material chamadas de traço: traço piloto (traço que serve de base para o estudo), traço rico (que possui uma relação água/cimento (a/c) menor do que o traço piloto) e o traço pobre (que possui uma relação a/c maior do que o traço piloto). Seguiu-separa a moldagem dos corpos-de-prova para os posteriores ensaios de compressão do concreto que foram realizados após 7, 28, 56 e 91 dias.

Para o agregado graúdo natural, a dosagem do concreto e seus resultados foram obtidos com a utilização do agregado graúdo natural do tipo Brita 1.

Fig. 1 Tabela dos resultados obtidos com o ensaio de compressão do concreto

RESISTÊNCIA À COMPRESSÃO						
CONCRETO	a/c	fc28	7 dias	28 dias	56 dias	91 dias
PILOTO	0,55	31,6	23,17	30,24	32,29	40,02
RICO	0,43	31,6	26,96	35,6	37,89	44,27
POBRE	0,67	31,6	12,52	20,21	22,63	23,15
BRITA 1	0,48	31,6	23,43	31,97	34,31	40,53

Os resultados obtidos no estudo de dosagem e ensaios à compressão satisfatórios em relação ao uso do agregado graúdo reciclado na composição de um concreto, mesmo com a variabilidade observada neste agregado. Analisando os resultados à compressão, o agregado graúdo reciclado, apresentou um ganho de resistência no período de 91 dias semelhante ao concreto com agregado natural.

A próxima etapa foi à inicialização da análise numérica utilizando o método dos elementos finitos e princípio dos trabalhos virtuais.

Foram estudados os elementos de barra, elemento de viga, elemento plano (2D), colocando em prática no software de elementos finitos MARC/Mentat, que permite a resolução de problemas numéricos. Primeiramente foi realizado um estudo e uma análise numérica sobre o modelo proposto de vigas de concreto, no estado plano de tensões. Inicialmente foi analisado o modelo numérico de uma viga de concreto, de comportamento linear.

Essencialmente, com o intuito de determinar o tipo de apoio, ou vínculo a ser utilizado nas vigas, foram consideradas duas simulações, uma contendo ambos os apoios de segundo gênero, isto é, restringindo os deslocamentos verticais e horizontais e permitindo a rotação. A outra viga foi modelada com um apoio de primeiro gênero (restringe apenas o deslocamento vertical, permitindo a rotação o deslocamento horizontal) e outro apoio de segundo gênero.

Devido ao comportamento distinto das vigas estudadas, podemos concluir que a diferença entre as tensões de tração e de compressão encontradas na viga hiperestática (com dois apoios de segundo gênero) ocorreu devido à influência da concentração de tensões nos apoios. O que não foi observado no caso da viga isostática (com um apoio de primeiro gênero e outro de segundo gênero), que obteve valores muito semelhantes aos valores teóricos. Isso nos permitiu adotar um tipo de estrutura para os estudos posteriores, trabalhado com vigas isostáticas.

REFERÊNCIAS

BUTTLER, A. M. Concreto com Agregados Graúdos Reciclados de Concreto – Influência da Idade de Reciclagem nas Propriedades dos Agregados e Concretos Reciclados. São Carlos, 2003. 199p. Dissertação (Mestrado) – Escola de Engenharia de São Carlos, Universidade de São Paulo.

CAMPITELI, V. C. Concreto de cimento Portland: um método de dosagem. Engenharia Civil. 20. 2004.

Associação Brasileira de Normas Técnicas. Agregados para concreto - Especificação: NBR 7211. Rio de janeiro. 2009.